
期刊简介
《中草药》杂志是由中国药学会和天津药物研究院共同主办的国家级期刊,月刊,国内外公开发行。本刊创始于1970年1月。1992年荣获首届全国优秀科技期刊评比一等奖; 2002年荣获中国期刊方阵“双奖期刊”;2003年1月荣获第二届国家期刊奖(期刊界最高奖);2005年1月荣获第三届国家期刊奖提名奖,2005—2010年连续6次荣获“百种中国杰出学术期刊”;2006年荣获天津市优秀期刊“特别荣誉奖”;2008年荣获“中国精品科技期刊”;2009年荣获“新中国60年有影响力的期刊”和“中国科协精品科技期刊”;2010年荣获“第二届中国出版政府奖期刊奖”(中国新闻出版行业最高奖)。本刊为中国自然科学核心期刊、全国中文核心期刊,位居中药学期刊之首。多年来一直入选美国《化学文摘》(CA)千刊表,并被美国《国际药学文摘》(IPA)、荷兰《医学文摘》(EM)、荷兰《斯高帕斯数据库》(Scopus)、美国《乌里希期刊指南》(Ulrich’s Periodicals Directory)、世界卫生组织西太平洋地区医学索引(WPRIM)、波兰《哥白尼索引》(IC)、英国《质谱学通报(增补)》(MSB-S)、日本科学技术振兴机构数据库(JST)、美国剑桥科学文摘社(CSA/ProQuest)数据库等国际著名检索系统收录。本刊被收录为国家科技部“中国科技论文统计源期刊”(中国科技核心期刊)。经中国科学文献计量评价研究中心和中国学术期刊(光盘版)编委会认定,《中草药》杂志为“中国科学引文数据库来源期刊”和“中国学术期刊综合评价数据库来源期刊”,并由中国知网独家全文收录。本刊主要报道中草药化学成分;药剂工艺、生药炮制、产品质量、检验方法;药理实验和临床观察;药用动、植物的饲养、栽培、药材资源调查等方面的研究论文,并辟有中药现代化论坛、专论、综述、新产品、企业介绍、学术动态和信息等栏目。承蒙广大作者、读者的厚爱和大力支持,本刊稿源十分丰富,为了缩短出版周期,增加信息量,本刊自2011年1月起由A4开本每期168页扩版为208页,定价35.00元。国内邮发代号:6-77,国外代号:M221。请到当地邮局订阅。如有漏订者,可直接与本刊编辑部联系。欢迎广大作者踊跃投稿,欢迎广大读者订阅,欢迎与中外制药企业合作,宣传推广、刊登广告(包括处方药品广告)。中草药杂志社网上在线投稿、审稿、查询系统已开通,欢迎广大读者、作者、编委使用。
写医学论文时,应该如何选择统计分析方法?
时间:2024-11-27 14:46:08
在医学论文写作中,选择合适的统计分析方法对于准确解读数据和得出可靠结论至关重要。以下是一些指导原则:
一、目的
1.研究目的分类
描述性研究:如果只是想描述样本的特征,如患者的年龄分布、疾病的症状频率等,通常使用描述性统计方法。
比较性研究:当需要比较两组或多组数据之间的差异时,如比较不同治疗方法对患者疗效的差异,就要根据数据类型选择合适的假设检验方法。
相关性研究:旨在研究两个或多个变量之间的关系,如研究患者的血压与体重之间的关系,可选择相关分析方法。
预测性研究:若想根据一些已知变量预测另一个变量的值,如根据患者的某些检查指标预测疾病的预后,可能会用到回归分析等方法。
2.数据类型辨别
定量数据(数值型数据):包括连续型数据(如身高、体重、血压等可以取任意数值的数据)和离散型数据(如患者人数、细胞计数等只能取整数的数据)。对于定量数据,常用的统计方法有 t 检验、方差分析、线性回归等。
定性数据(分类数据):如患者的性别(男 / 女)、疾病类型(冠心病、糖尿病等)。对于定性数据,一般采用卡方检验、Fisher 精确检验等来分析。
二、实验设计
1.样本分布情况
正态分布:如果数据呈正态分布,在比较两组定量数据的均值时,可使用独立样本 t 检验(两组间比较)或配对样本 t 检验(配对设计,如同一患者治疗前后比较)。对于多组定量数据的比较,可采用方差分析。
非正态分布:当数据不呈正态分布时,对于两组间比较可以使用非参数检验,如 Mann - Whitney U 检验(独立样本)或 Wilcoxon 符号秩和检验(配对样本)。对于多组间比较,可以使用 Kruskal - Wallis H 检验。
2.实验设计特点
完全随机设计:如果研究是将对象完全随机地分配到不同组,如比较 A 药、B 药和安慰剂对某种疾病的治疗效果,对于定量数据可以用方差分析来比较组间差异,对于定性数据可以用卡方检验。
配对设计:常见于自身前后对照实验或配对样本实验,如对同一批患者在手术前后的某一指标进行比较,对于定量数据使用配对 t 检验或 Wilcoxon 符号秩和检验(非正态分布时),对于定性数据可以用 McNemar 检验。
分层设计:当考虑到某些因素(如年龄、性别等)可能对结果产生影响而进行分层抽样或分层分析时,需要采用分层分析的统计方法,如分层卡方检验或分层线性模型。
三、变量数量和关系
1.单变量分析:只涉及一个变量的分析,如描述某一疾病患者的年龄分布,主要使用描述性统计方法。若要比较不同组在这个变量上的差异,对于定量数据用 t 检验或方差分析(正态分布)或非参数检验(非正态分布),对于定性数据用卡方检验。
2.多变量分析
多个自变量与一个因变量:如果有多个自变量影响一个因变量,如研究患者的年龄、性别、血压、血脂等多个因素对心脏病发病风险的影响,可采用多元线性回归(因变量为定量数据)或逻辑回归(因变量为分类数据,如是否发病)。
多个变量间的相互关系:对于研究多个变量之间的相互关系,如基因表达谱数据中多个基因之间的相关性,可以使用主成分分析、聚类分析、因子分析等方法来探索变量之间的内在结构和关系。
四、参考文献和专业建议
1.查阅类似研究:查看在相同或相似研究领域中,其他作者使用的统计方法。
2.咨询统计专家:如果对统计方法的选择不确定,可向专业的统计学家或有丰富统计经验的研究人员咨询。他们可以根据具体的数据和研究设计提供最合适的统计方法建议。